If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15t^2-4t-2=0
a = 15; b = -4; c = -2;
Δ = b2-4ac
Δ = -42-4·15·(-2)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{34}}{2*15}=\frac{4-2\sqrt{34}}{30} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{34}}{2*15}=\frac{4+2\sqrt{34}}{30} $
| 14=x+7+13+x | | 3(t+2)+1=18 | | Y=-5/7x+1 | | X+3/4=2x-3/3 | | X+3√x-1=1 | | 5x+5=12+-2x | | 2(4m-4)=36 | | x/2+3x/4=x-1 | | 6/(x+2)=5/3 | | 6x^-13x+6=0 | | 11+17x+4+18x=180 | | (W-4/2)-2=(w+4/5) | | -0.10(42)+0.30x=0.05(x-14) | | 6+11x=180 | | 6+11x+105=180 | | 9–5x=12–(6x+7) | | 7(x+3)-5x=9+2x+12 | | -6(x+2)-x-4=-7(x+3)+5 | | (3x+7)/4-2x=3-(2-5x) | | 11(x-3)-7=24x-144 | | x(x-4)/2=48 | | -2x+5x-7=3(x-6)-1 | | 3(n+4)/5=11-(6-2n)/2 | | x/(1-x)=0.24 | | 12x-6x+4=5x+10 | | n-8=5n+4 | | -7(y-3=-14 | | 15/13x=0 | | 6x-2=5.5 | | 0.3(20-x)+0.5x=15 | | 4x-(2x-8)=-(3x-6) | | 3x+15/2=x+15 |